Statistical Process Control (SPC) is a statistical method to measure, monitor, and control a process. In other words, SPC is a method of quality control which employs statistical methods to measure, monitor, and control a process. It is a scientific visual method to monitor, control, and improve the process by eliminating special cause variation in a process.

History of Statistical Process Control (SPC)

Though SPC effectively used in western industries since 1980, it was started during twenties in America. Walter A Shewhart, developed the control chart and the concept that a process could be in statistical control in 1924 at Bell Telephone Laboratories, USA. The SPC concepts are included in the management philosophy by Dr. W.E. Deming just before World War II. However, SPC became famous after Japanese industries implement the concepts and compete with western industries.

Meaning of SPC

  • Statistics: Statistics is a science which deals with a collection, summarization, analysis, and drawing information from the data.
  • Process: It converts input resources into the desired output (goods or services) with a combination of people, materials, methods, machines, and measurements.
  • Control: System, policies, and procedures in place the overall output meets the requirement .

Why use Statistical Process Control

Today companies are facing increasing competition and also operational costs, including raw material continuously increasing. So for the organizations, it is beneficial if they have control over their operation.

Organizations must make an effort for continuous improvement in quality, efficiency, and cost reduction. Many organizations still follow inspection after the production for quality related issues.

SPC helps companies to move towards prevention-based quality control instead of detection based quality controls. By monitoring SPC graphs, organizations can easily predict the behavior of the process.

Statistical Process Control Benefits

  • Reduce scrap and rework
  • Increase productivity
  • Improve overall quality
  • Match process capability to product requirement
  • Continuously monitor process to maintaining control
  • Provide data to support decision making
  • Streamline the process
  • Increase in product reliability
  • Opportunity for company-wide improvements

Statistical Process Control Objective

SPC focuses on optimizing continuous improvement by using statistical tools to analyze data, make inferences about process behavior, and then make appropriate decisions.

The basic assumption of SPC is that all processes are subject to variation. Variation measures how data are spread around the central tendency. Moreover, variation may be classified as one of two types, random or chance cause variation and assignable cause variation.

Common Cause: A cause of variation in the process is due to chance, but not assignable to any factor. It is the variation that is inherent in the process. Process under the influence of common cause will always be stable and predictable.

Assignable Cause: It is also known as “special cause”. The variation in a process that is not due to chance therefore can be identified and eliminated. Process under influence of special cause will not be stable and predictable.

Statistical Process Control (SPC)

How to Perform SPC

1.Identify the processes: Identify the key process that impacts the output of the product or the process that is very critical to the customer. For example, plate thickness impacts the product’s performance in a manufacturing company, then consider the plate manufacturing process.

2. Determine measurable attributes of the process: Identify the attributes that need to measure during the production. From the above example, consider the plate thickness as a measurable attribute.

3. Determine the measurement method and also perform Gage R&RCreate a measurement method work instructions or procedure including the measuring instrument. For example, consider thickness gage to measure the thickness and create an appropriate measuring procedure. Perform Gage Repeatability and Reproducibility (Gage R & R) to define the amount of variation in the measurement data due to the measurement system.

4. Develop a subgroup strategy and sampling plan: Determine the subgroup size based on the product’s criticality and determine the sampling size and frequency. For example collect 20 sets of plate thicknesses in a time sequence with a subgroup size of 4.

5. Collect the data and plot SPC chart: Collect the data as per sample size and select an appropriate SPC chart based on data type (Continuous or Discrete) and also subgroup size. For Example, plate thicknesses with a subgroup size of 4, select Xbar -R chart.

6. Describe natural variation of attributes: Calculate the control limits. From the above example, calculate the upper control limit (UCL) and lower control limit (LCL) for both Xbar Range.

7. Monitor process variation: Interpret the control chart and check whether any point is out of control and the pattern. Example: check Xbar R chart If the process is not in control, then identify the assignable cause(s) and address the issue. This is an ongoing process to monitor the process variation.

Additional Statistical Process Control Resources

Control limits  are the voice of the process (different from specification limits, which are the customer’s voice.) They show what the process is doing and act as a guide for what it should be doing. Control limits also indicate that a process event or measurement is likely to fall within that limit.

Control charts : A Control chart is one of the primary techniques of statistical process control (SPC). The control chart is a graphical display of quality characteristics that have been measured or computed from a sample versus the sample number or time. Furthermore, control chart contains a center line represents the average value of the quality characteristics and two other horizontal lines known as upper control limit (UCL) and lower control limit (LCL) 

Selection of an appropriate control chart is very important in control charts mapping. Otherwise, it ended up with inaccurate control limits for the data. The selection of control chart depends on the data type: Continuous or Discrete?

Variable (Continuous) Control Charts

Measure the output on a continuous scale. It is possible to measure the quality characteristics of a product.

  • X bar – R Charts (when data is readily available) X bar R chart is used to monitor the process performance of a continuous data and the data to be collected in subgroups at a set time periods. It is actually a two plots to monitor the process mean and the process variation over the time.
  • Run Charts (limited single-point data) A run chart displays observed data as they evolve over time. Just a basic graph that displays data values in a time order. Can be useful for identifying trends or shifts in process but also allows you to test for randomness in the process.
  • X – MR Charts (I – MR, individual moving range) I-MR chart also known as X-MR chart. An Individual moving range (I-MR ) chart is used when data is continuous and not collected in subgroups. In other words collect the single observation at a time. An I-MR chart provides process variation over time in graphical method. 
  • X bar – S Charts (when sigma is readily available) X Bar S charts often used control chart to examine the process mean and standard deviation over the time. These charts are used when the subgroups have large sample size and S chart provides better understanding of the spread of subgroup data than range.
  • EWMA Chart: The EWMA – Exponentially Weighted Moving Average chart is used in statistical process control to monitor variables (or attributes that act like variables) that make use of the entire history of a given output. This is different from other control charts that tend to treat each data point individually.

Attribute(Discrete) Control Charts:

The output is a decision or counting. It is not possible to measure the quality characteristics of a product. In other words, it is based on the visual inspection like good or bad, fail or pass, accept or reject.

  • p Charts:  (for defectives – sample size varies) – Use P chart when the data are the fraction defective of some set of process output. It may also shown as percentage of defective. The points plotted on p-chart are the fraction of non confirming units or defective pieces found in n samples.
  • np Charts (for defectives – sample size fixed) – Use an np-chart when the data collected in subgroups that are the same size. np-charts show how the process, measured by the number of nonconforming items (defectives) it produces, changes over time. In other words, the process describes pass or fail, yes or no.
  • c Charts (for defects – sample size fixed) – Use c charts when the data are concerned with the number of defects in a product. The number of defects collected for the area of opportunity in each subgroup. 
  • u Charts (for defects – sample size varies) – A u chart is an attribute control chart that displays how the frequency of defects, or nonconformities, is changing over time for a process or system.  The number of defects collected for the area of opportunity in each subgroup.

Statistical Process Control Links

Great decision matrix here: https://www.moresteam.com/toolbox/statistical-process-control-spc.cfm

Statistical Process Control Videos

Six Sigma Green Belt Statistical Process Control Questions


This section requires you to be a Pass Your Six Sigma Exam member. Log in or Sign up in seconds with the buttons below!

Login to your account
OR
Enroll in Pass Your Six Sigma Exam

Questions, comments, issues, concerns? Please leave a note in the comments below!


Question: In the Control Phase of a LSS project a Belt will identify key metrics that can be monitored and analyzed to give an indication that a process may be moving towards an out of spec condition. When he applies this approach he is using __________________.

(A) Poisson Derivatives
(B) Inferential Statistics
(C) Kanban Analysis
(D) Statistical Process Control

Question: Statistical process control (SPC) is best defined as the use of

(A) Pareto charts to understand and control a process
(B) inputs to control critical and complex processes
(C) statistical methods to identify and remove manufacturing errors
(D) statistical methods to understand and control a process

This section requires you to be logged in.

Comments (4)

Could you direct me to the AIAG information you mentioned in the control phase quiz? I followed the link provided but do not see the answer. I tried searching in the search bar but no results.

Larry, you don’t really need the Automotive Industry Action Group (AIAG) information. By definition out of control could be considered a certain number of points in a row on one side of the X Bar Bar or R in a control chart or a certain number of points in a row that are consistently increasing or decreasing.

I’ve seen some standards list 5 points and others list 7. The key to the question is knowing that a process shift or trend has begun if you see that behavior emerged.

I’ve updated the answer walkthrough with this.

You can find AIAG’s PDF on Academia.com here: https://www.academia.edu/7829906/AIAG_Statistical_Process_Control_SPC_2nd_Edition

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.